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A quasi-Newton version of a VU-bundle algorithm for minimizing a convex function, with knowledge of only one subgradient 
value at each point,  was perfected to the point where numerical superlinear convergence could be observed. The algorithm is 
important, because it is the type needed for minimizing implicitly defined functions resulting from applying decomposition, 
relaxation and/or dualization techniques to complex real-world optimization problems. Also, valuable research was carried out 
for nonconvex objective functions. This included a non-VU bundle method for composite functions where the outer function is a 
positively homogeneous convex function and the inner vector function is a smooth mapping. Such an explicitly known structure 
separates the two difficulties of nonconvexity and nonsmoothness by allowing only the components of the inner mapping to be 
nonconvex and only the outer function to be nonsmooth. This new algorithm was shown to be convergent to stationary points 
and judged to be the best performer out of four methods tested on many examples. Also, significant progress was made on on 
designing a VU algorithm to run on general semismooth functions. This entailed making a V-model based bundle method 
subalgorithm with convergence to stationary points.
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Accomplishments:

Decomposition techniques are often the best choice for solving large scale complex
optimization problems. Applications of such techniques in energy planning, 
generation and distribution are contained in grant supported publications [11], 
[13], [14], [3] and [5].  The decomposition type of approach involves minimizing a
nonsmooth objective function with special structural properties. For (more 
general) equilibrium problems, similar ideas can be exploited, as explained in 
publications [5] and [4], dealing with structured variational inequalities 
resulting from generalized Nash equilibrium problems.

For optimization problems subject to uncertainty, further decomposition methods 
and structural properties of nonsmooth constrained convex problems are exploited 
in [1], [7], [10], [14], [3] and [2]. In particular, publication [14] considers a 
special bundle method, which appears to be computationally effective in 
chance-constrained programming for optimal management of a set of cascaded 
hydro-reservoirs. An earlier method that uses inexact objective information for 
two-stage stochastic programming problems appears in [7]. These methods can be 
embedded in a more general framework described in [9] and extended in [8] to 
level bundle variants capable of handling inexact information.

For nonsmooth objective functions, possibly nonconvex, paper [12] develops a 
computationally effective proximal bundle method for minimizing a composite 
function where the inner mapping is smooth and the outer function is a positively 
homogeneous convex function of several variables. Such an explicitly known 
structure separates the two difficulties of nonconvexity and nonsmoothness by 
allowing only the outer function to be nonsmooth and only the components of the 
inner mapping to be nonconvex. This new algorithm was shown to be convergent to 
Clarke stationary points and judged to be the best performer among four methods 
tested on several numerical examples. 

During the last grant year significant progress was made towards the goal of 
producing a foundation for designing a future VU-type minimization algorithm to 
run on semismooth locally Lipschitz functions for which only one Clarke 
generalized gradient can be computed at a point. Paper [6] gives an excellent 
illustration of superlinear convergence attained by a VU-algorithm running on a 
convex objective example. The intent of current work is to attain this fast type 
of asymptotic convergence if the proposed algorithm gets close enough to a Clarke 
stationary point that is a strong local minimizer.  

The groundwork for the nonconvex case involved development of a 'V-model' based 
bundle method subalgorithm that has provable convergence to stationary points and 
can make adequate estimates of 'V-subspace' bases in the presence of nonconvexity.
This entailed adding safeguarded second order correction terms to the polyhedral 
affine subfunction expressions as done in the superlinearly convergent algorithm 
for the single variable case in [R. Mifflin, Math. Prog. 28 (1984) 50-71].



This work has also produced a very large class of convex model functions for use 
in bundle methods to obtain asymptotic stationarity for nonconvex objectives. This
class contains much more than polyhedral functions, for example, the composite 
model in [12]. 

These new research results will be contained in a submission to a special edition 
of the Journal of Convex Analysis dedicated to the memory of Jean Jacques Moreau,
a pioneer in the development of convex analysis.  
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